

Course Code Course Name ECTS Credit

CSC202 Data Structures and Algorithms 7.5

Pre-Requisite Course Type Language of Instruction

CSC102 Compulsory English

Year of Study Level of Course Mode of Delivery

2nd / 3rd BSc/1st Cycle On Campus

Course Objectives:

The course will introduce students to the basic concepts of data structures, as well as their usefulness in various computer functions. Structures such as tables, stacks, queues, linked lists, trees, and charts will be discussed and analyzed. Students will develop algorithms ad learn to operate and handle these structures effectively. Finally, an analysis of the complexity of the spatial time of the algorithms will be presented.

Learning Outcomes

Upon completion of the course, students are expected to be able to:

- Analyze the program with time complexity and its expression with notation Oh, Omega and Theta.
- Classify and evaluate linear and nonlinear data structures.
- Solve computer problems using programs with abstract data structures.
- Solve computer problems by applying different algorithms.

Teaching Methodology:

Lectures 42 hours

Labs 30 hours

Course Content

Introduction and application of data structures

Definition and application of data structures

The definition of an algorithm, and the difference between an algorithm and a program

Program creation and analysis.

Asymptotic notation and numeric, O-notation.

Complexity of search and classification algorithms.

Retrospective mathematical function, a problem set up repeatedly

Mathematical induction

Comparison of iterative and retrospective solutions
Strategies divide and reign
Retrospective withdrawal
Linked lists:
Apply a linked list
Index on linked list
Import and delete on linked lists
Effectiveness of these functions and comparison of linked lists with successive storage structures
Algorithms for deleting and adding to linked lists
Stacks and queues:
Definition
Creating a Stack
Delete, return and add item from a stack
Algorithms for adding and deleting data from a stack.
Create a queue
Deleting the front tail item
Add item to the back of the queues.
Algorithms for deleting and adding queues
Sorting and searching:
O (n2) and O (nlogn) sorting techniques
Linear and binary search, greedy and split and baseline algorithms
Fragmentation
Trees.
Theory of Graphs.
What a graph
What a path and a circuit
Directed and non-written
The breadth and depth
Graph search, graph representation graphs as abstract data structures.
Assessment Methods:
Final Exam

Mid-Term/Lab Exam

Assignments

Required Textbooks/Reading:

Title	Author(s)	Publisher	Year
Data Structures	E. Balagurusamy	Mc Graw Hill	2019
Introduction to JAVA programming and	Lang Daniel	Pearson	2019
Data Structures			