

Course Code Course Name ECTS Credit

ADSA 401 Advanced Design Applications 6

Pre-Requisite Course Type Language of Instruction

- Compulsory English

Year of Study Level of Course Mode of Delivery

4th 8th Semester On Campus

Course Objectives:

This course aims to set the basic elements, principles, and methodologies in the emerging and rapidly developing field of spatial analysis and visualization. Through this course, students explore and analyze data, develop data mining skills, and learn to apply visual design principles to their research output. Data mining, data analytics, and data visualization seek to explore new ways of untangling the complexity of data through design

Learning Outcomes:

- Define a significant range of skills, techniques, tools, practices, and/or materials that are associated with data mining and data visualization.
- Demonstrate research activities and set achievable intermediate goals appropriate to a project of advanced research. Employ analytical and methodological skills in developing design concepts.
- Analyze and explore tools, skills, and production methods of emergent technologies in design media, focusing on creative visualization, analysis and utilization of data.
- Identify the crucial role of perception of information and analyze a large and complex body of information.
- Move from design standardization to specialized application.

Teaching Methodology:

- Studio work
- Visual presentations
- Conceptual models and drawings
- Lectures
- Project briefing
- Monitor discussions
- Visual research methodologies
- Brainstorming techniques
- Concept development processes
- Interaction and collaborative learning
- Guest speakers
- Personal research, realization, and manipulation in project work
- Continuous evaluation and assessment
- Extended references and bibliography

Course Content:

The course is divided into three parts:

1- Explore data fields:

The transition from traditional design objectives to exploring big data to find innovative objectives.

2- Data mining:

Analyzing and selecting/grouping/typologizing data sets.

3- Data Visualization:

Visualize composite and hybrid data sets to better understand complexity and reveal new design patterns.

Assessment Methods:

Participation, Midterm, Final

Required Textbooks/Reading:

Title	Author(s)	Publisher	Year
Visual complexity. Mapping patterns of	Lima, M.	Princeton	2013
information.		Architectural	
		Press.	
Information Graphics	Rendgen S., Wiedemann, J.	TASCHEN	2018
Data Visualisation	Kirk, A.	Sage	2019
		Publications	
Steps to an	Roger F. Malina, Carol Strohecker,	MIT Press,	2012
Ecology of Networked Knowledge and	and Carol LaFayette		
Innovation: Enabling New Forms of			
Collaboration among Sciences, Engineering,			
Arts, and Design			